Stemcelldoc's Weblog

January 26, 2012

Ortho Stem Cell Treatments: The Importance of Delivery

Stem cell therapy is a alternative to traditional orthopedic knee surgery.  Mesenchymal stem cells (MSC) can differentiate into cartilage, bone, tendon, ligament and disc.  Studies have demonstrated that the use of cultured expanded mesenchymal stem cells are both safe and effective in the treatment of knee osteoarthritis.

Does it matter how the stem cells are delivered to a targeted area?

In the case of soft tissue this is not a concern since the surrounding tissue will confine the spread of the stem cells to the targeted area.

In the case of a joint such as the knee the delivery of cells  is of critical significance. The key is that stem cell function through local attachment to the damaged site.  Animal studies have demonstrated that cells injected into a large joint often times have difficulty finding their way to the damaged area.

The key is delivering  stem cells directly into the damaged site.  Koga demonstrated this by comparing the results of blindly injecting stem cells into a joint vs dripping the cells directly into the damaged area.  The illustration below tells the story.  A defect in the cartilage was created and different methods of delivery were examined.  On the left there was minimal cartilage growth after the injection of saline.  In the middle there was minimal cartilage growth after blindly injecting stem cells into the joint. On the right where cells were injected directly into the area of damaged there was robust cartilage growth.  The new cartilage is purple in color.

Bottom Line:  The exact placement of stem cells within a joint is of critical importance.

At the Centeno-Schultz Clinic we utitlize x-ray and MSK ultrasound to guide bone marrow and platetlet derived stem cells into the  area of damaged tissue to maximize clinical outcomes.

January 1, 2012

Orthopedic Stem Cells: Cell Sources

Stem cells have been successful in the treatment of common orthopedic injuries which include knee osteoarthritis, meniscus tears, quadriceps and patella tendonosis and ACL laxity Ortho 2.0 discusses  our comprehensive approach at the Centeno-Schultz Clinic.

Stem cells have also been successful in treatment of some neurologic and cardiac disorders.  The world witnessed the successful creation of a trachea utilizing stem cell technology.

Stem cells are available for many sources which include blood, fat (adipose), muscle, synovial fluid and bone marrow.

For orthopedic applications does it matter where the cells come from?

Yes!

Stem cells derived from the bone marrow are best for orthopedic applications as discussed in recent chapter authored by Dr. Centeno.

Regenexx is a bone marrow derived stem cell treatment for common orthopedic conditions.  The procedure involves harvesting bone marrow from the iliac crest(waist bone) and processing it in a state of the art lab.  Clinical differences are accomplished when processing of cells is performed by a stem cell biologist vs a bedside centrifuge.  This is part of the Regenexx difference.  The laboratory is accredited through the International Cellular Medicine Society and tracks patients in a non-profit registry.

December 3, 2011

Orthopedic Stem Cells: How they work

At Centeno-Schultz Clinic we acknowledge the regenerative potential of stems cells in treating common orthopedic injuries.   Dr. Centeno authored a chapter on stem cell use in orthopedic injury.
Regenexx C & Regenexx SD are alternatives to knee surgeries.

How do stem cells work?

Three principal ways:  differentiation, paracrine affect and regulation of inflammation.

Mesenchymal stem cells are multipotent and can differentiate into cartilage, tendon, bone and ligament.

Paracrine means that mesenchymal stem cells release certain growth factors to assist in tissue repair.  Mesenchymal stem cells  can be viewed as construction managers as they recruit other cells to the local area and coordinate the repair of damaged tissue.  The growth factors include TGF-beta, VEGF and FGF.

Finally MSC’s have been demonstrated to regulate inflammation.  Inflammation is not all bad and is the first step in healing.